博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
数学 - WHU 1603 - Minimum Sum
阅读量:6006 次
发布时间:2019-06-20

本文共 961 字,大约阅读时间需要 3 分钟。

mean

给定n个整数,从中选出m个整数出来,使得这m个整数两两求(差的绝对值),并保证(差的绝对值)之和最小。

analyse

首先,要使得m个数(差的绝对值)之和最小,易知这m个数应该是连续的,所以先排序。

然后就是滑窗法了。

滑的时候如何维护滑块的sum呢?

如果我们选出的数是:

  a1 a2 ... ak

对于a1,后面有k-1个数,且每个数都是减去它,即:a1带了k-1次负号;

对于a2,后面有k-2个数,且每个数都是减去它,,带了k-2次负号,但是他还要减去它前面的所有数,又带了k-1次正号,相抵后总的带了k-3次负号;

对于a3,后面有k-3个数,且每个数都是减去它,,带了k-3次负号,但是他还要减去它前面的所有数,又带了k-2次正号,相抵后总的带了k-5次负号;

...

由此可以看出,求m个数(差的绝对值)之和的方式是:

  sum1 = a1*(1-k) + a2*(3-k) + a3*(5-k) + ... + ak*(k-1)

向后滑动一个数,sum2的求法一样,这时我们来对比一下sum1和sum2的差别:

  sum1 = a1*(1-k) + a2*(3-k) + a3*(5-k) + ... + ak*(k-1)

  sum2 =            a2*(1-k) + a3*(3-k) + ... + ak*(k-3) + a(k+1)*(k-1)

我们先预处理出s[]数组,s[i]代表a0~ai的和.

那么:sum2=sum1+ai*(k-1)-a(i-k)*(1-k)-2*(s[i-1]-s[i-k]).

time complexity

O(N)

view code

 

#include 
using namespace std;const int N=100010;int a[N],s[N];int main(){ freopen("G:\\nowcoder\\in","r",stdin); freopen("G:\\nowcoder\\out","w",stdout); int n,k,T; scanf("%d",&T); while(T--) { scanf("%d %d",&n,&k); for(int i=0; i

 

转载地址:http://gzpmx.baihongyu.com/

你可能感兴趣的文章
【矢量图控件教程】矢量图控件VectorDraw 常见问题整理大全(一)
查看>>
文件系统、服务、防火墙、SELINUX——安全四大金刚
查看>>
RabbitMQ如何保证队列里的消息99.99%被消费?
查看>>
Lync Server 2010的部署系列_第五章 准备 Active Directory 域服务
查看>>
java基本数据类型及运算符小结
查看>>
第一周博客作业
查看>>
Python strip lstrip rstrip使用方法
查看>>
Linux开发工具_1_gcc入门(上)
查看>>
在这里安家了
查看>>
ERP项目更应授人以渔
查看>>
我的友情链接
查看>>
thinkpython2
查看>>
JDK、JRE和JVM的关系
查看>>
String、StringBuffer和StringBuilder的区别
查看>>
【原创】ObjectARX中的代理对象
查看>>
.net中验证码的几种常用方法
查看>>
解决OracleDBConsoleorcl不能启动
查看>>
.net DLL程序集中打包另一个DLL
查看>>
我的友情链接
查看>>
Drupal第三方模块汇集(一)
查看>>